Lower bounds on the maximum number of non-crossing acyclic graphs

نویسندگان

  • Clemens Huemer
  • Anna de Mier
چکیده

This paper is a contribution to the problem of counting geometric graphs on point sets. More concretely, we look at the maximum numbers of non-crossing spanning trees and forests. We show that the so-called double chain point configuration of N points has Ω(12.52 ) noncrossing spanning trees and Ω(13.61 ) non-crossing forests. This improves the previous lower bounds on the maximum number of non-crossing spanning trees and of non-crossing forests among all sets of N points in general position given by Dumitrescu, Schulz, Sheffer and Tóth (SIAM J. Discr. Math 27(2), 2013). Our analysis relies on the tools of analytic combinatorics, which enable us to count certain families of forests on points in convex position, and to estimate their average number of components. A new upper bound of O(22.12 ) for the number of non-crossing spanning trees of the double chain is also obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Bounds on the Generalised Acyclic Chromatic Numbers of Bounded Degree Graphs

We give upper bounds for the generalised acyclic chromatic number and generalised acyclic edge chromatic number of graphs with maximum degree d, as a function of d. We also produce examples of graphs where these bounds are of the correct order.

متن کامل

General Lower Bounds for the Minor Crossing Number of Graphs

There are three general lower bound techniques for the crossing numbers of graphs: the Crossing Lemma, the bisection method and the embedding method. In this contribution, we present their adaptations to the minor crossing number. Using the adapted bounds, we improve on the known bounds on the minor crossing number of hypercubes. We also point out relations of the minor crossing number to strin...

متن کامل

A Better Heuristic for Orthogonal Graph Drawings

16 We end this paper by mentioning some open problems and directions for further research: Valiant proved that a grid-area of (n 2) is necessary for drawing non-planar graphs, since the crossing number can be (n 2) 26]. However, the involved constants are very small. For planar graphs (crossing number 0) a drawing with grid-area O(n log 2 n) is possible 14, 26], and the best known lower bound i...

متن کامل

On Open Packing Number of Graphs

In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015